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We derive macroscopic Lyapunov functions for large, long-range, lsing-spin 
neural networks with separable symmetric interactions, which evolve in time 
according to local field alignment. We generalize existing constructions, which 
correspond to determfllistic (zero-temperature) evolution and to specific choices 
of the interaction structure, to the case of stochastic evolution and arbitrary 
separable interaction matrices, for both parallel and sequential spin updating. 
We find a direct relation between the form of the Lyapunov functions (which 
describe dynamical processes) and the saddle-point integration that results from 
performing equilibrium statistical mechanical studies of the present type of 
model. 
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1. I N T R O D U C T I O N  

Long-range stochast ic  Ising spin models  with and without  detai led balance 
have come to play an increasingly impor tan t  role in the s tudy of  informa- 
tion processing in neural  networks.  In such models  spins represent  neurons,  
interact ion strengths between spins represent synapt ic  efficacies, and local 
(magnet ic)  a l ignment  fields play the role of  pos tsynapt ic  potentials.  F o r  a 
more general  in t roduct ion  to this field we refer to recent textbooks  ~t-3) or  
review papers.  ~4~7) 

Since biological  realism forces one to try to aba ndon  the symmetry  of  
the neural  interact ions,  and  since in the usual  type of model  interact ion 
symmetry  (in turn)  is equivalent  to having detai led balance (apar t  from 
some trivial exceptions),  s tudying the dynamics  directly is often the only 
route  toward  analyt ical  results. F o r  long-range models  with separable  
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interactions (with or without detailed balance) it turns out that in the 
thermodynamic limit and on finite time scales one can derive deterministic 
dynamical laws for a suitably chosen set of macroscopic order param- 
eters, c8-]~ The dynamics of such systems can now be studied at a macro- 
scopic level by studying these laws, either in the form of coupled nonlinear 
mappings (for parallel microscopic dynamics) or in the form of coupled 
nonlinear differential equations (for sequential microscopic dynamics). 

At present, apart from general (microscopic) results like the 
H-theorem, (u) the only Lyapunov functions that have been constructed for 
Ising-spin neural networks apply to the zero-temperature case, (~2'~3~ to 
strictly positive-definite or negative-definite interaction matrices, (6'~4) or to 
specific zero-temperature models with delays. ~5) In this paper we address 
the problem of how to construct macroscopic Lyapunov functions corres- 
ponding to the dynamical laws which (in the thermodynamic limit) govern 
the evolution of order parameters for arbitrary finite stochastic noise levels 
and for both sequential and parallel microscopic dynamics. These macro- 
scopic Lyapunov functions are expectation values of true state variables. 
We restrict ourselves to symmetric networks (i.e., with detailed balance). 
For both types of dynamics (sequential and parallel) we find a direct 
relation between the form of the macroscopic Lyapunov functions (which 
describe dynamical processes) and the saddle-point integration that results 
from performing equilibrium statistical mechanical studies of the present 
type of model. This emphasizes the equivalence of thermodynamic stability 
and dynamic stability previously demonstrated for the special case A = 
and sequential dynamics. ~6) Our study clearly confirms the intuitive picture 
of visualizing the dynamics of symmetric neural networks as the minimiza- 
tion of some state variable, to be interpreted as a dynamic "free energy." 

2. SEPARABLE STOCHASTIC NEURAL NETWORKS 

We study systems of N Ising spins (or neurons) s iE{ -1 ,  +1}, 
i~{1 ..... N}, coupled by separable interaction matrices (or synaptic 
efficacies) given by the general form 

1 ~ t, v J u = ~  ,..., ~;A~,v~j (1) 
/ t , v=  l 

For neural networks the vectors ~J'= (~  ..... ~ )  represent stored items of 
information. The states of the neurons evolve according to a stochastic 
local field alignment with local fields given by 

N 

hk(s) = E JkiSi ( 2 )  
i = l  
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We study two extreme cases: synchronous updating with discrete time steps, 
and asynchronous updating with time defined as a continuous variable. 

We define the synchronous dynamics via a Markov process 

p,§ ,(s) = 5" o~(s' - ,  s) p,(s') 
SP 

1 N 

CO(S t ~ S)  =2-NHlk= { 1 + tanh[f lskhk(s ' )]  } 

(3) 

where the vector s = ( s  I , . . . ,  SN) denotes the microscopic states, and co(s' ~ s) 
is the transition probability for the state change s ' ~  s. For asynchronous 
updating the transition rate is nonzero for single spin-flips only. In the latter 
case we define the dynamics via a master equation 

d N 
p,(s) = ~ {%(Fjs) p,(Fjs) - % ( s )  p,(s)} 

j = l  

I 
cok(s) = ~ { 1 - tanhEflskhk(S)] } 

(4) 

where coj(s) is the transition rate for the transition s ~ Fjs and Fj is the 
spin-flip operator F j # ( s ,  ..... sj ..... SN) = (I'(S, ..... --Sj ..... SN). In both cases fl 
is a measure of the stochasticity in the system, and plays the role of the 
inverse temperature. 

If the number of patterns p is not too large (p ,~ v/'N), (7) then in the 
thermodynamic limit, deterministic equations for the evolution in time of a 
set of macroscopic order parameters can be derived for both parallel (9''~ 
and sequential (s'9) dynamics. These equations take the form of a first-order 
nonlinear difference equation and a first-order nonlinear differential 
equation, respectively, 

m,+,  = <~ tanh(fl~. Am,)> (5) 

d 
- -  m = <~ tanh(fl~- Am)> - m (6) 
dt 

The angular brackets denote an average over the random variables 
~ ' : < F ( ~ ) > - - ( 1 / N ) Z ~ = , F ( ~ ) ,  ~ ,=  ' p (~i ..... ~i ). For neural networks with 
randomly drawn patterns ~f E { -  1, + 1} with equal probabilities and, 
since p scales as less than .v/'N, for N ~ oo, averaging a function of ~i over 
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the sites i is equivalent to averaging over all 2 p possible configurations of 
~ { - 1 ,  +I}P: 

<F({) > = 2  -p ~ F({) (7) 
{e{-l,+1}p 

The order parameters, which evolve deterministically, are defined as 

1 N 
m = ( m  1 ..... m"), m u = N ,  ~'=x si~f (8) 

In neural networks they give the overlaps of the current system configura- 
tion with the stored patterns {". 

In the remaining sections of this paper, we will construct Lyapunov 
functions La(m) of the macroscopic variables evolving according to (5), 
(6), for arbitrary symmetric matrices A. From the equations of motion (5), 
(6), we can see that m , ~ [ - 1 ,  +1]  p for all t~>0. This is immediately 
obvious for the discrete-time case since - 1  ~< < ~  tanh(fl~.Am,)> ~< +1. 
For the continuous-time case, we can see for the same reason that each 
component of m will remain within [ -  1, + 1 ]. We mention this despite 
the fact that due to its physical interpretation (8), m ~ [ -  1, + 1] p, since it 
is used in our subsequent analysis, which only builds on the equations of 
motion (5), (6). 

3. THE H-THEOREM 

The H-theorem guarantees the approach of the microscopic probability 
distribution p,(s) to an equilibrium probability distribution pJs) ,  provided it 
exists and is positive for each microscopic state s, for any stochastic process 
defined by a continuous-time master equation which obeys detailed balance. 
It can be quite easily proved <ll> that s is a 
monotonically decreasing function for such processes and is bounded from 
below, where f(x) is an arbitrary convex function, i.e., Vx>~0: f(x)>i O, 
f"(x) > 0. If the equilibrium probability distribution has the Boltzmann 
form, pjs)..~e -pn<s), the usual choice made is f(x)=xlogx. Now .L~ ~ 
becomes 

,9> 

This is not yet a true Lyapunov function for the evolving macroscopic state 
vector m since it is a function of the microscopic probability distribution; 
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however, intuitively one may hope to use (9) as a starting point for 
constructing a Lyapunov function for the macroscopic laws (5), (6). 

If the Hamiltonian H(s) depends on the microscopic state (s) only 
through the values of the order parameters m (as is the case for the class 
of models considered in this paper), we obtain, by putting H(s)= Ne(m(s)), 

fi-N = ~  I dm ~,(m)[ e(m) + Zs 6 [ m - m ( s ) ]  pt(s)(z~f6_(__m_m__~,(s)l/fiN)log p,(s)] (10) 

where ~(m) = Zs p,(s) 6[m - m(s)] is the macroscopic probability dis- 
tribution. For the case where the order parameters m evolve in time 
deterministically in the thermodynamic limit giving rise to Eqs. (5), (6), 
~(m) ~ 6 [ m - m , ] ,  where m, evolves according to (5), (6). The quantity 
(10), however, cannot be reduced to a function of m, without using addi- 
tional information about the underlying microscopic states, or by making 
additional assumptions or approximations, because of the appearance of 
the entropic term log p,(s). Such microscopic information would require 
knowledge of the solution of Eqs. (3), (4) which is exactly what one tries 
to avoid in deriving the macroscopic equations (5), (6). An approximation 
which could be made would be to (incorrectly) assume equipartitioning of 
probability in the m-subsheUs of the ensemble, which would imply making 
in (10) the replacement 

p71(s) ~ ~ 6 [ m - m ( s ) ]  = e  -Nc*cs) (N--* ~ )  

resulting in the appealing expression 

~ t  . ~  equip 1 
fiN --- e(m) + ~ c*(m) for N --* ~ ( 11 ) fi--~ 

where c*(m) is the Legendre transform of the cumulant generating function, 
derived from large-deviations theory~6h 

c*(m) = sup(m �9 x - <log cosh(x �9 ~)> ) (12) 
x 

Unfortunately, away from equilibrium the assumption of subshell-equi- 
partitioning of probability is unsustainable, p,(s) is the full complicated 
solution of the microscopic laws (3), (4) and will exhibit equipartitioning 
in the macroscopic subshells only in equilibrium. To see this, assume that at 
t=  0 we prepare an  ensemble distribution po(S) obeying equipartitioning 
within the m subshells: po(s )=f [m(s ) ]  for some function f According to 
the master equation (4), we now find 
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=! E _2 

+ 2 ~i s,. tanh[flhi(s)] 2 

Expanding in powers of N and using hi(s) = {i" Am(s) - (I/N) ~.  A{is~, 
we get 

d p,(s) = - V m f [ m ( s ) ]  �9 {m(s) + ({  tanh[f l{.  Am(s)]) g } 
~ t=0 

- - f [ m ( s ) ] / ~  ~. [{i" A{i]{ 1 -  tanh2[fl{, ." Am(s)]} 

+ f [ m ( s ) ]  ~ si tanh[fl{;" Am(s)] +(9(N - l )  (14) 
i 

Equipartitioning at t = 0 is sustained for t > 0 only if the above expression 
depends on the microvariables s only through m(s). For the present class 
of models the last of the above terms violates this requirement (except for 
the trivial case p--  I, where we recover the m-range ferromagnet). There- 
fore equipartitioning at t = 0 does not imply equipartitioning at t > 0. This 
is in contrast to a formulation in terms of sublattice magnetizations 
mg=(1/Ig) Y'.i~si, where the sublattices Ig consist of all those sites for 
which {i = {. Deterministic evolution of the latter order parameters (which 
are akin to the magnetization in the m-range ferromagnet), however, 
requires p ~ log N, rather than the much greater number afforded by our 
description at the level of overlaps, requiring only p2~ N. 

Therefore the H-theorem cannot be used to prove a priori that (11 ) is 
a true macroscopic Lyapunov function in the thermodynamic limit for the 
macroscopic laws (5), (6). Nevertheless we will show in Section 5 that for 
separable systems this is indeed the case, and can even be generalized to 
discrete-time parallel dynamics. 

4. STRICTLY POSITIVE OR STRICTLY NEGATIVE MATRICES A 

It is reasonably easy to find a macroscopic Lyapunov function ~ ( m )  
for the differential equation (6) when the symmetric matrix A is either 
positive definite, ~a + (m), or negative definite, ..9' - (m), (6' la. 16) 

~cP• + ~ m ' A m - T  (log cosh(fl~" Am)) (15) 
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since 

d dm dm dm 
dtLe-+= ___(m- (~  tanh(fl~- A m ) ) ) . A - ~ - =  ~ - ~ . A - - ~ - ~ < O  (16) 

(d/dt) _oq "+-- can only be zero when (d/dt)m =0,  since A is strictly positive 
or strictly negative definite. It is also easy to convince oneself that 5e +- is 
bounded from below, since m is only defined on the interval [ -  1, + 1 ]P, 
and the expression (15) contains no singularities. Hence ~ +-- is a Lyapunov 
function for the macroscopic equations (6) derived for asynchronous 
updating and strictly positive or strictly negative matrices A, respectively. 

For synchronous updating we know from a microscopic analysis that 
at T =  0 the network will again settle into an equilibrium configuration for 
A positive definite and a period-two cycle for A negative definite. r Here 
we show that the Lyapunov function [ ~ +, (15)] of the sequential case is 
also a Lyapunov function of the macroscopic equations (5) derived for the 
parallel case for A positive definite. First we note that the macroscopic 
parallel dynamics (5) can be written 

m,+l = m , - A  -l  �9 Vs (17) 

We then use the identities 

~ '+ (x  + y) = ~ + ( x )  + ~ y~'O~,.o~+(x) 
I t  

+ 2d2 dp ~, y"yVO~v~+(x+2py) (18) 
./t, v 

t,,,l (19) 

F~,(x) = ( ~ [  1 - tanh'-(f l~" Ax)] ) 

[where the symmetric matrix F(x) has only nonnegative eigenvalues], to 
obtain for symmetric and invertible A 

/ t ~  + = ~r +(m,+ ,) - ~ +(m,) = f f + ( m , -  V A - ' ~ +  ) - ~ +(m,) 

= - V A  a + .  ).d2 dpA-3+flF(m,-2pA-~V,.~ +) VA a+ 

~< 0 (20) 
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Equality only holds when 0~, ~ + = 0, which reduces to exactly the condition 
for a fixed point m =  (~  tanh(fi~. Am)) .  Hence ~ +  decreases monotoni- 
cally until a fixed point is reached. 

5. C O N S T R U C T I O N  FOR A R B I T R A R Y  SEPARABLE M O D E L S  

In equilibrium we know that the properties of the network are deter- 
mined by using as a generating function the free energy for the sequential 
case, and Peretto's pseudo free energy ~3~ for the parallel case. Consider 
the free energy per neuron, f ,  with H as either the Ising Hamiltonian or 
Peretto's pseudo-Hamiltonian (as appropriate) 

, , 
f =  - f i - - -~ logZ= - ~ - ~ l o g  ~ e (21) 

{,} 

If the (extensive) Hamiltonian depends on the system state (s) only 
through the macroscopic variables (m"), then we can write H ( { s } ) =  
Ne(m(s)). Along with the density of microscopic states 

~ ( m )  = y '  ~(m - m(s)) = e - uc.l.,) (N ~ ~ ) 
{s} 

where c*(m) is the Legendre transform of the cumulant generating 
function, derived from large-deviations theory t6~ 

c * ( m )  = s u p ( m  �9 x - ( log  cosh(x �9 ~))  
% 

(22) 

we can now write the free energy for large N as 

1 ) 
f = -- fi---/~/log dm e -  ulc*~m)+ p~.,)~ 

1 , 
= 1  min s176 

fi-,,~'p fi 
(23) 

where rh is the value of m which minimizes c*(m) + fit(m), since the integral 
will be extremally dominated. We will prove that (1 / f i )c*(m)+e(m) ,  with 
e(s) as appropriate to the dynamics, is a Lyapunov function for both types 
of macroscopic laws (5), (6) with symmetric A. 

We will first prove a property of c*(m), namely that for physically 
realizable m [i.e., m " =  (l/N)Y'.e ~:se] the supremum is satisfied by a finite 
critical point rather than at x = oo. This result is required in the proofs to 
follow. If we write x = fix, where ~ is a unit vector in the direction of x and 
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x is its modulus, and use the identity log c o s h ( z ) = - l o g 2 + l z l +  
log(1 + e -2 I:I), then the quantity to be maximized becomes 

x(m- ~ - ( I~" ~1 ) ) + log 2 - ( log( 1 + e-2" Me-~M) ) (24) 

We can write m in terms of the sublattice magnetizations rn~ ~ [ -  1, + 1 ], 
m =  (~me) ,  where me(s)=(1/Ie)Zi~l~s~ and the sublattices I e consist of 
those sites i for which ~i = ~. As a result, for large x the expression in (24) 
behaves as 

x(~'fcme-l~'Ycl)+log2=x(l~'Yq[mesgn(~'~)-l])+log2 (25) 

Clearly this is not maximized in the limit x--* oo for physical m e 
(e [ -  1, + 1 ] ). Hence the supremum is bounded, and so must be realized 
by a finite critical point. 

5.1. Paral lel  Dynamics  

The microscopic properties of the models with synchronous updating 
(5) are obtained by using the Peretto pseudo-Hamiltonian ~3) 

H( {s} )=  1 ~ l o g  ( 2 c o s h f l  ~ Jo.sj) 
f l  i j ~ i  

N 
- ( log 2 cosh[fl~.  Am(s)] )  +(_9(1) 

fl 
(26) 

so that 

I 
e(m) = ---z ( log 2 cosh(fl~. Am))  (27) 

P 

and 

Lepar(m) = c*(m) - ( log 2 cosh(fl~ �9 Am))  (28) 

T h e o r e m  1. .LPpar(m) is a monotonically decreasing function of the 
process (5) if A* =.A, only stationary when in a period-two cycle. 

Proof. Consider 2ep,r(m , +1). Taking the gradient of the argument of 
the supremum and subsituting the dynamics (5), we find that it is realized 
among those x satisfying (~  tanh(fl~. Am,))  = (~  tanh ~. x) .  Since the 
supremum is realized at a finite critical point we can write for those x 
satisfying the extremization criterion 
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0 = < ~[tanh(fl~" Am) - tanh(~ �9 x)]  > 

dz (1 (29) = ( ~  f~.~fAm - t a n h 2  z) > 

Then using the substitution z = ~ - I x  + 2 ( f l A r e - x ) ]  and taking the inner 
product with p A m -  x gives 

O=<[~'(flAm-x)]2 f~ d2(1-tanh2{~'[x-2(flAm-x)]})> (30) 

This implies x = flAre,, since the integral can never be zero. If we use this 
to calculate zl~pa r = ~par(m, + I) -- &~ then 

zlLc'pa , = tim, + l" Am, -- ( log cosh(fl ~. Am,) > - ( log cosh(fl~ �9 Am,+ 1) > 

- s u p ( m ,  . y -  ( log cosh(~- y)>) + ( log cosh(fl~. Am,)> 
Y 

= m,. (flAm,+ 1) - ( log cosh(fl~ - Am,+ 1)> 

- sup(m, �9 y - <log cosh(~ �9 y ) )  ) 
Y 

~<0 (31) 

AL#par=0 requires y = f l A m , + t ,  the supremum condition for y is m , =  
<~ tanh(~, y)>, and hence a stationary .o~Opa r implies 

m, = < ~ tanh(fl~. Am,+ 1)> = m,+z (32) 

i.e., Lapa r is a monotonically decreasing function of the macroscopic 
dynamics (5) for A =A* and is only stationary when the system is in a 
period-two cycle. Since m is only defined on [ -  1, + l]P and -L#p~r has no 
poles, it must be bounded from below, and hence satisfies the necessary 
conditions to be a Lyapunov function of the macroscopic synchronous 
dynamics (5). 

5.2. Sequential  Dynamics 

For the asynchronous Glauber dynamics (6) we must use the usual 
Ising Hamiltonian 

n < { s } ) =  - - -  
1 1 a v 2N • Ji:s,sj= --2-NE ~" ~iAuv~)sis:+c~ 

i # j  I,J It, v 

N 
- m.  Am + const 

2 
(33) 
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so that 

and 

e(m) = - �89  Am 

.L~a~eq(m) = c*(m) - ~  m.  Am 
d .  

(34) 

(35) 

Theorem 2. ~ q ( m )  is a monotonically decreasing function of the 
process (6) if A t = A, only stationary when in a fixed point. 

Proof. The supremum is realized among those x satisfying m = 
( ~ t a n h ~ . x ) ,  since the argument of .L~a~eq remains bounded. If we 
substitute this relation into .La~eq(m), we get 

.W~eq(m) = (~  �9 x tanh(~ �9 x) - log cosh(~ �9 x ) )  - � 8 9  (36) 

= d y y ( 1 - t a n h 2 y )  - � 8 9  A m  (37) 

Differentiating with respect to one component of m, we find, using A t =  A, 

aooqaseq(m) 0X" 
am ~ - - ~  (~ .x~Y[-1- - tanh2(~ .x) ] )  ~m~--fl(Am) (38) 

Y 

The supremum, however, is realized among those x satisfying m =  
(~  tanh ~. x ) ;  differentiating this equation gives 

Om a Ox v 
a ~  = Om" = ~ ( r 1 - tanh2(~ �9 x)]  ) 0m ~ (39) 

v 

Combining these two equations, we see that the x realizing the supremum 
satisfies Vm&a~r Substituting this into our expression for 
~r gives 

~scq(m) = �89 Am + m" Vm ~scq(m) 

-- ( log cosh[fl~ �9 Am + ~ �9 VmL~a,~q(m)]) (40) 

Now d&#~eq(m)/dt = V=~,eq(m). dm/dt; using the equation of motion for m, 
(6), we obtain from this 

d~seq(m) 
dt 

- -  = --m. Vm,~seq('m) + (Vm ~qaseq(m ) " ~ tanh(fl~ �9 Am)) 

= --~r -- (log cosh[fl~ �9 Am + ~" Vm ~aseq(m) ] ) 

I 
+ ~  tim" Am + (Vm,~seq(m)" ~ tanh(fl~" Am)> (41) 
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If we let ~ ~ Vm,~se q = , ~ ,  then the maximum of d.o~q/dt + '~seq with respect 
to variation of 2g is satisfied tbr 2~ = 0 V~. Hence we can write 

d.~scq ( m ) 1 
dt ~< -~r  + ~ tim" Am - (log cosh(fl~ �9 Am)) 

-L~a~q(m) + {[tim- Am - (log cosh(fl~" Am)) ] 

- l f l m ' 2  Am) 

1 �9 Am) ~< { [t im. Am - (log cosh(fl~. Am)) ] - ~  tim 

- {sup[m. x -  (log cosh(x- ~)) ] - ~ m. Am} 

~<0 (42) 

~seq(m) is only stationary when the above-mentioned maximum of 
do~scq/dt+ .LPse q is realized, i.e., ~. V~,Z,~ for all ~. From this we 
conclude that VmL~q=O and hence x=flAm. Combination with the 
supremum criterion m = (~ tanh(~, x)) subsequently gives 

m = (~ tanh(fl~. Am)) (43) 

which is a fixed point of the dynamics (6). The only remaining constraint 
on s for it to be a Lyapunov function is that it is bounded from 
below, which is obviously the case, since m only exists in the range 
[ - 1 ,  +1]  p, and L,a~q(m) has no poles. Hence s176162 is a Lyapunov 
function of the macroscopic asynchronous dynamics (6). 

6. C O N C L U S I O N  

We have shown that for Ising spin models of neural networks with 
long-range separable symmetric interactions, macroscopic Lyapunov func- 
tions exist. We have generalized existing Lyapunov functions of the "free 
energy" type to finite temperatures and arbitrary separable symmetric 
embedding matrices. We have shown that the proposed Lyapunov func- 
tions correspond exactly to the scalar surfaces that are encountered in the 
saddle-point integration resulting from equilibrium statistical mechanical 
studies, emphasizing the equivalence of thermodynamic and dynamic 
stability. We can therefore interpret the dynamics of the present type of 
symmetric network as (not necessarily gradient) descent on a "free energy" 
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surface, for both parallel and sequential updating of the individual spins. 
The macroscopic dynamical equations which form the basis of our calcula- 
tions are only strictly valid for p ~ x /~ ,  N ~ ~ ,  but we may suspect that 
similar results can be obtained for the equations governing the behavior for 
p = ctN as suggested by recent dynamical studies. (17) 
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